В каком органе происходит газообмен

ГАЗООБМЕ́Н

В каком органе происходит газообмен

Авторы: Г. Г. Исаев (Газообмен у животных), Г. А. Дмитриева (Газообмен у растений)

ГАЗООБМЕ́Н (био­ло­гич.), об­мен га­зов ме­ж­ду ор­га­низ­мом и внеш­ней сре­дой в про­цес­се ды­ха­ния.

В ор­га­низ­мы по­сту­па­ет ки­сло­род (O2), ко­то­рый за­тем ис­поль­зу­ет­ся для окис­ле­ния со­еди­не­ний, во­вле­кае­мых в об­мен ве­ществ; в ре­зуль­та­те ос­во­бо­ж­да­ет­ся энер­гия, не­об­хо­ди­мая для жиз­не­дея­тель­но­сти, и об­ра­зу­ют­ся ко­неч­ные про­дук­ты об­ме­на, в т. ч. ди­ок­сид уг­ле­ро­да (CO2) и не­зна­чит. ко­ли­че­ст­во др.

га­зо­об­раз­ных со­еди­не­ний. Ор­га­низ­мы по­лу­ча­ют не­об­хо­ди­мый им O2 ли­бо из ат­мо­сфе­ры, ли­бо из во­ды, в ко­то­рой он рас­тво­рён. Г. осу­ще­ст­в­ля­ет­ся пу­тём диф­фу­зии га­зов не­по­сред­ст­вен­но че­рез по­верх­ность кле­ток.

Газообмен у животных

У про­стей­ших, ки­шеч­но­по­ло­ст­ных и чер­вей Г. про­ис­хо­дит че­рез по­кро­вы те­ла.

У на­се­ко­мых и пау­ко­об­раз­ных по­яв­ля­ет­ся сис­те­ма тру­бо­чек (тра­хей), с по­мо­щью ко­то­рых O2 по­сту­па­ет не­по­сред­ст­вен­но к тка­ням те­ла. У ра­ко­об­раз­ных, рыб и не­ко­то­рых др. ор­га­низ­мов для Г.

слу­жат жаб­ры, а у боль­шин­ст­ва по­зво­ноч­ных – лёг­кие. У зем­но­вод­ных по­ми­мо лёг­ких в Г. уча­ст­ву­ют ко­жа и эпи­те­лий, вы­сти­лаю­щий ро­то­вую по­лость.

У мн. жи­вот­ных и че­ло­ве­ка Г. осу­щест­в­ля­ет­ся при уча­стии ды­ха­тель­ных пиг­мен­тов (ме­тал­ло­про­теи­нов кро­ви или ге­мо­лим­фы), спо­соб­ных об­ра­ти­мо свя­зы­вать­ся с $\ce{O_2}$ и слу­жить его пе­ре­нос­чи­ка­ми. При вы­со­ких кон­цен­тра­ци­ях $\ce{O_2}$ пиг­мент лег­ко его при­сое­ди­ня­ет, а при низ­ких – от­да­ёт (в свя­зы­ва­нии $\ce{O_2}$ уча­ст­ву­ют гл. обр.

ио­ны же­ле­за или ме­ди). У по­зво­ноч­ных и мн. бес­по­зво­ноч­ных жи­вот­ных та­ким пиг­мен­том яв­ля­ет­ся ге­мо­гло­бин, у ря­да бес­по­зво­ноч­ных – ге­мо­циа­нин, ге­мо­эрит­рин и хло­ро­куо­рин. Лишь не­зна­чит. до­ля (ок. 5%) все­го по­сту­паю­ще­го из кле­ток в кровь $\ce{CO_2}$ на­хо­дит­ся в рас­тво­рён­ном со­стоя­нии; осн. его часть (ок.

80%) при уча­стии фер­мен­та кар­бо­ан­гид­ра­зы пре­вра­ща­ет­ся в уголь­ную ки­сло­ту, ко­то­рая дис­со­ции­ру­ет на кар­бо­нат­ные и гид­ро­кар­бо­нат­ные ио­ны; т. о., су­ще­ст­ву­ет рав­но­ве­сие ме­ж­ду рас­тво­рён­ны­ми $\ce{CO_2, H_2CO_3, HCO_3-}$ и $\ce{CO_3{2-}}$. Кро­ме то­го, 6–7% $\ce{CO_2}$ мо­жет взаи­мо­дей­ст­во­вать так­же с ами­но­груп­па­ми бел­ков (в т. ч.

ге­мо­гло­би­на) с об­ра­зо­ва­ни­ем кар­ба­ми­но­вых со­еди­не­ний. От­но­ше­ние уда­ляе­мо­го из ор­га­низ­ма $\ce{СО_2}$ к по­гло­щён­но­му за то же вре­мя О2 на­зы­ва­ет­ся ды­ха­тель­ным ко­эф­фи­ци­ен­том, ко­то­рый ра­вен при­мер­но 0,7 при окис­ле­нии жи­ров, 0,8 при окис­ле­нии бел­ков и 1,0 при окис­ле­нии уг­ле­во­дов.

Ко­ли­че­ст­во энер­гии, ос­во­бо­ж­даю­щей­ся при по­треб­ле­нии 1 л $\ce{O_2}$, со­став­ля­ет 20,9 кДж (5 ккал) при окис­ле­нии уг­ле­во­дов и 19,7 кДж (4,7 ккал) при окис­ле­нии жи­ров. Т. о.

, по по­треб­ле­нию $\ce{O_2}$ в еди­ни­цу вре­ме­ни и по ды­ха­тель­ному ко­эф­фи­ци­ен­ту мож­но рас­счи­тать ко­ли­че­ст­во ос­во­бо­див­шей­ся в ор­га­низ­ме энер­гии, оце­нить ин­тен­сив­ность окис­ли­тель­но-вос­ста­но­ви­тель­ных про­цес­сов, про­ис­хо­дя­щих во всех ор­га­нах и тка­нях.

Г. у жи­вот­ных уменьша­ет­ся с по­ни­же­ни­ем темп-ры те­ла, а при её по­вы­шении – уве­ли­чи­ва­ет­ся. У че­ло­ве­ка по­треб­ле­ние $\ce{O_2}$ мо­жет воз­рас­тать с 200–300 мл/мин в со­стоя­нии по­коя до 2000–3000 мл/мин при фи­зич. ра­бо­те, а у хо­ро­шо тре­ни­ро­ван­ных спорт­сме­нов – до 5000 мл/мин.

Со­от­вет­ст­вен­но уве­ли­чи­ва­ют­ся вы­де­ле­ние $\ce{CO_2}$ и рас­ход энер­гии; про­ис­хо­дят сдви­ги ды­ха­тель­но­го ко­эф­фи­ци­ен­та. Срав­нит. по­сто­ян­ст­во Г. обес­пе­чи­ва­ет­ся при­спо­со­би­тель­ны­ми (ком­пен­са­тор­ны­ми) ре­ак­ция­ми сис­тем ор­га­низ­ма, уча­ст­вую­щих в Г.

и ре­гу­ли­руе­мых нерв­ной сис­те­мой как не­по­сред­ст­вен­но, так и че­рез эн­док­рин­ную сис­те­му. Г. у че­ло­ве­ка и жи­вот­ных ис­сле­ду­ют в ус­ло­ви­ях пол­но­го по­коя, на­то­щак, при темп-ре 18–22 °С. При ис­сле­до­ва­ни­ях Г.

оп­ре­де­ля­ют объ­ём вды­хае­мо­го и вы­ды­хае­мо­го воз­ду­ха и его со­став (при по­мо­щи га­зовых ана­ли­за­то­ров), что по­зво­ля­ет вы­чис­лять ко­ли­че­ст­ва по­треб­ляе­мо­го $\ce{O_2}$ и вы­де­ляе­мо­го $\ce{O_2}$. См. так­же Ды­ха­ние, Ды­ха­ния ор­га­ны.

Газообмен у растений

Газообмен у растений со­про­во­ж­да­ет как ды­ха­ние, так и фо­то­син­тез: во вре­мя фо­то­син­те­за по­гло­ща­ет­ся $\ce{CO_2}$, вы­де­ля­ет­ся $\ce{O_2}$, а при ды­ха­нии – на­оборот. Как все жи­вые ор­га­низ­мы, рас­те­ния ды­шат 24 ч в су­тки, фо­то­син­тез же идёт толь­ко на све­ту.

Днём, как пра­ви­ло, фо­то­син­тез идёт бы­ст­рее ды­ха­ния, к ве­че­ру ско­рость его сни­жа­ет­ся и в оп­ре­де­лён­ный мо­мент ста­но­вит­ся рав­ной ско­ро­сти про­ис­хо­дя­ще­го од­но­вре­мен­но ды­ха­ния. При этом Г. не ре­ги­ст­ри­ру­ет­ся (со­стоя­ние ком­пен­са­ции).

При даль­ней­шем умень­ше­нии ос­ве­щён­но­сти ды­ха­ние на­чи­на­ет пре­об­ла­дать, а в тем­но­те про­ис­хо­дит толь­ко вы­де­ле­ние $\ce{CO_2}$, об­ра­зую­ще­го­ся в ре­зуль­та­те ды­ха­ния.

Г. ли­сть­ев, мо­ло­дых стеб­лей, цвет­ков про­ис­хо­дит че­рез усть­ица (с по­мо­щью от­кры­ва­ния и за­кры­ва­ния по­след­них рас­те­ние ре­гу­ли­ру­ет ско­рость Г.). На ста­рых стеб­лях усть­ица за­ме­ня­ют­ся все­гда от­кры­ты­ми че­че­вич­ка­ми (от­вер­стия­ми в проб­ке), по­это­му Г. ста­рых стеб­лей рас­те­ние ре­гу­ли­ро­вать не мо­жет.

Ско­рость Г. раз­лич­на у рас­те­ний раз­ных ви­дов, в раз­ных ор­га­нах и тка­нях од­ного рас­те­ния. Она за­ви­сит от внеш­них фак­то­ров и фи­зио­ло­гич. со­стоя­ния кле­ток.

По ко­ли­че­ст­ву вы­де­лен­но­го или по­гло­щён­но­го $\ce{O_2}$ или $\ce{CO_2}$ оп­ре­де­ля­ют ско­рость фо­то­син­те­за или ды­ха­ния то­го или ино­го рас­те­ния или ор­га­на.

Источник: //bigenc.ru/biology/text/2339975

В каких сосудах происходит газообмен? где происходит газообмен?

В каком органе происходит газообмен

Каждому человеку необходимо знать об особенностях работы своего организма. На все базовые вопросы, касающиеся анатомии, сложно ответить сразу. Поэтому сейчас вниманием будет затронут лишь один. И звучит он так: «В каких сосудах происходит газообмен?». Интересен не только вопрос, но еще и тема, к которой он относится, а потому сейчас следует рассмотреть ее чуть более подробно.

Вкратце о процессе

Перед тем как рассказать о том, в каких сосудах происходит газообмен, необходимо обсудить специфику самого процесса. Исходя из названия, можно понять, что так принято обозначать обмен газов между организмом и внешней средой.

Процесс элементарен. В организм из окружающей среды поступает кислород (без перерывов), который потребляют все ткани, органы и клетки. А он, в свою очередь, обратно выделяет углекислый газ, образующийся в процессе, а также некоторые другие продукты метаболизма.

Данный процесс необходим практически для всех организмов. Потому что без него нормальный обмен веществ энергии не представляется возможным.

Капилляры легких

Вот в каких сосудах происходит газообмен. Хотя нельзя утверждать так однозначно, потому что функции газообмена, а также насыщение крови кислородом осуществляется при участии сосудов всего малого круга кровообращения.

У ветвей легочной артерии очень тонкие стенки. Вся сосудистая система очень податливая, растягивается она легко. В нее поступает довольно большой объем крови из правого желудочка (в минуту около 6 литров).

И это учитывая низкое давление в малом круге (примерно 15-22 мм рт.ст.). Обусловлен данный факт очень небольшим сопротивлением. Оно в десять раз меньше, чем в сосудах, относящихся к большому кругу кровообращения.

Особенности строения сосудов

Ни с чем нельзя сравнить сеть альвеолярных капилляров. И рассказывая о том, в каких сосудах происходит газообмен, просто нельзя не затронуть вниманием специфику их структуры. Особенности можно выделить в такой перечень:

  • Капиллярные сегменты очень малы.
  • Все они между собой обильно взаимосвязаны, вследствие чего образуется петлистая сеть.
  • Отдельные капиллярные сегменты очень плотно заполняют все единицы площади альвеолярной поверхности.
  • Скорость кровотока очень низкая. Почему? Потому что в стенках альвеол такая плотная капиллярная сеть, что некоторыми физиологами она рассматривается, как сплошной слой движущейся крови.

Итак, где происходит газообмен – ясно. Что касательно размеров? Площадь поверхности изученной капиллярной сети приближена к альвеолам (примерно 80 м2). И в ней содержится порядка 200 мл крови.

Если говорить об альвеолярных кровеносных капиллярах, то их диаметр варьируется от 8,3 до 9,9 мкм. У эритроцитов он поменьше – 7,4 мкм.

Что это значит? То, что эритроциты очень плотно примыкают к капиллярным стенкам.

Данная особенность кровоснабжения создает превосходные условия для эффективного и быстрого газообмена, результатом которого становится нормализация газового состава артериальной крови и альвеолярного воздуха.

Описание процесса

Исходя из вышесказанного, можно понять, где происходит газообмен. Но как именно? Стоит попробовать ответить и на этот вопрос.

Для начала нужно понять, что ключевая задача легких – осуществлять процесс газообмена, а не просто перегонять воздух. И в них вдыхаемый состав меняется. Вот тут уже в процесс включается кровеносная система. А именно – капилляры. Ими пронизаны все альвеолы.

Попав в них, кислород отправляется в стенки капилляров. Почему? Потому что в крови и в воздухе, который в альвеолах содержится, разное давление. У венозной крови оно намного ниже.

Именно поэтому из альвеол кислород устремляется в капилляры. А вот давление углекислого газа больше в крови, чем в альвеолах.

Что, в свою очередь, значит это? То, что из венозной крови углекислый газ транспортируется сразу в просвет альвеол.

Затем кислород присоединяется к гемоглобину, содержащемуся в эритроцитах, и в таком виде движется по организму. Вследствие этого образуется артериальная кровь, обогащенная кислородом.

Взаимодействие с сердечной системой

Что происходит дальше? Кровь транспортируется к сердцу, которое затем перегоняет ее к клеткам тканей. После этого она по сосудам доставляется ко всем клеткам организма.

На этом процесс не заканчивается. Поступая в клетки, кровь «отдает» весь кислород, вбирая в себя углекислый газ, который является продуктом жизнедеятельности.

После этого начинается обратный процесс. Проходит он по такому пути: тканевые капилляры – вены – сердце – легкие. Поступая в конечный пункт, венозная кровь, насыщенная углекислым газом, снова транспортируется в альвеолы. После этого она с остатками воздуха отправляется наружу. А углекислый газ точно так, как и кислород, транспортируется при помощи гемоглобина.

Интенсивность процесса

Рассказывая о том, в каких сосудах происходит газообмен в легких, стоит отметить интересный нюанс.

Дело в том, что этот процесс (а, соответственно, и последующий расход энергии) становится менее интенсивным, если температура тела понижается.

Сначала это было выявлено у холоднокровных созданий, а затем удалось доказать аналогичную зависимость и у теплокровных млекопитающих. Человек, естественно, к ним тоже относится.

То же самое наблюдается в условиях искусственной или естественной гипотермии. А вот при повышении температуры тела, когда человек заболевает или перегревается, газообмен наоборот увеличивается.

Что происходит в легких?

Стоит вернуться к этому вопросу. Как происходит газообмен в сосудах и какой путь затем проделывает обогащенная кислородом кровь – ясно. Но что конкретно происходит в легких?

Они осуществляют экскреторную функцию. Проявляется она в удалении более 200 летучих веществ, образовавшихся в организме либо попадающих в него извне. Углекислый газ, экзогенные вещества (этиловый эфир и спирт), ацетон, метан, закись азота и фторотан – все перечисленное в той или иной степени удаляется из крови именно через легкие.

Помимо кондиционирования этот орган также выполняет защитную функцию. Микроорганизмы, попавшие внутрь в процессе вдыхания, и осевшие затем на стенках альвеол, захватывают и уничтожают альвеолярные макрофаги.

Также стоит напомнить, что в легких образуются иммуноглобулины, интерферон, специфические лейкоцитарные антитела и лизоцим – те элементы, которые играют важную роль в защите организма от различных инфекционных агентов.

Значение кислорода

В каких кровеносных сосудах происходит газообмен и как в целом осуществляется данный процесс, ясно. Теперь стоит поговорить и о значении кислорода для организма человека.

Это – элемент-органоген. В организме его содержится до 65%. А это примерно 40 килограмм, если брать в расчет среднестатистического человека.

Ключевая функция кислорода – участие во всех окислительно-восстановительных реакциях, проходящих в организме. Именно благодаря ему организм может утилизировать белки, жиры и углеводы с извлечением энергии для своих нужд.

Согласно исследованиям, в минуту потребляется от 1,8 до 2,4 грамма кислорода.

Заключение

В завершение темы, касающейся вопроса, в каких сосудах происходит газообмен в легких и тканях, хотелось бы сказать, что этот процесс, пожалуй, является самым стабильным в организме.

Его постоянство сохраняется всегда, даже если меняется парциальное давление О2 в окружающей среде, нарушается работа органов дыхания и т.д. А происходит это благодаря наличию приспособительных реакций систем, которые участвуют в газообмене. Их, к слову, контролирует ЦНС.

Источник: //FB.ru/article/467113/v-kakih-sosudah-proishodit-gazoobmen-gde-proishodit-gazoobmen

Анатомия человека. Дыхание. Пищеварение. Обмен веществ и др. – Блоги творческих и интересных людей

В каком органе происходит газообмен

ДЫХАНИЕ

Лёгкие служат хранилищем воздуха, который поступает туда из внешней среды через нос или рот.

Дыханием называют обмен газов между клетками и окружающей средой. У человека газообмен состоит из 4-х этапов. 1) обмен газов между воздушной средой и лёгкими; 2) обмен газов между лёгкими и кровью; 3) транспортировка газов кровью; 4) газообмен в тканях.

Система органов дыхания выполняет лишь первую часть газообмена. Остальное выполняет система органов кровообращения.

Различают лёгочное дыхание, обеспечивающие газообмен между воздухом и кровью, и тканевое дыхание, осуществляющее газообмен между кровью клетками.

Система органов дыхания включает верхние дыхательные пути:носовую полость. носоглотку, глотку; нижние дыхательные пути: гортань, трахею, главные бронхи и лёгкие, покрытые лёгочной плеврой. Войдя в лёгкие, главные лёгкие ветвятся, образуют бронхиальное дерево, на концах которых находятся лёгочные пузырьки, альвеолы.

Лёгкие находятся в герметически закрытых полостях, стенки которых выстланы пристеночной плеврой. Между пристеночной и лёгочной плеврой находится щелевидная плевральная полость. Давление в них ниже, чем в лёгких, а потому лёгкие всегда прижаты к стенкам грудной полости и принимают её форму.

функция органов дыхания – поддерживать постоянство газового состава воздуха в альвеолах: удалять излишки углекислого газа и восполнять уносимый кровью кислород. Это достигается благодаря дыхательным движениям.

При входе скелетные мышцы расширяют грудную полость. следом за ней расширяются лёгкие, давление в альвеолах падает и наружный воздух входит в лёгкие.

При выдохе грудная полость уменьшается, её стенки сдавливают лёгкие и воздух выходит из них.

Регуляция дыхания осуществляется автоматически – продолговатым мозгом в зависимости от концентрации в крови углекислого газа, но на частоту и глубину дыхания сказывается эмоциональное состояние человека. Произвольное изменение дыхания осуществляется корой больших полушарий головного мозга.

Звукообразование происходит в гортани благодаря колебаниям ых связок. Речь осуществляется благодаря артикуляции, в которой участвует язык, зубы, губы и другие органы, направляющие звуковые потоки.

ПИЩЕВАРЕНИЕ

Пища является строительным материалом и источником энергии. Её поступление необходимо для поддержания пластического и энергетического обмена.

Но пищевые белки, жиры и углеводы не могут непосредственно стать частью нашего тела, поскольку из-за тканевой несовместимости они будут уничтожены иммунной системой. Необходима их предворительная переработка.

Пищеварение – это сложный ферментативный процесс, при котором сложные пищевые вещества путём физической и химической переработки переходят в более простые органические вещества, которые участвуют в клеточном обмене.

Процессы пищеварения осуществляются органами пищеварительной системы.

пищеварительный тракт состоит из пищеварительного канала (ротовой полости, глотки, пищевода, желудка, тонкой и толстой кишки) и пищеварительных желез ( слюнных, желудочных, поджелудочной, кишечных и печени с желчным пузырём).

В состав пищеварительных соков входят ферменты Вещества, на которые они действуют называются субстратом. Каждый фермент способен действовать на свой субстрат при определённых условиях (температура, кислотно-щелочное равновесие и др.).

Переваривание пищи происходит происходит автоматически и не контролируется нашей волей. Оно регулируется безусловными и условными рефлексами, а также гуморальным путём.

Всасывание питательных веществ осуществляется ворсинками, тонкой кишки, а окончательное всасывание воды, минеральных солей и витаминов происходит в толстой кишке.

Переваривание пищи частично осуществляется полезными микроорганизмами, находящимися в кишечнике.

Попадание болезнетворных микроорганизмов в пищеварительный канал может вызвать ряд тяжёлых заболеваний, а недоброкачественная пища может стать причиной отравления. Для предотвращения отравлений и пищевых инфекций надо соблюдать правила гигиены.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ.

Под обменом веществ и энергии имеют в виду совокупность химических и энергетических процессов, протекающих в организме и обеспечивающих его жизнедеетельность. активное взаимодействие с окружающей средой, рост, развитие и воспроизведение потомства.

Подготовительная стадия обмена заключается в переваривании пищи, дыхании, транспортировке кислорода и питательных веществ к клеткам и тканям тела.

Основная стадия обмена веществ происходит в клетках тела. Она состоит из двух связанных между собой процессов:

ПЛАСТИЧЕСКОГО ОБМЕНА, за счёт которого синтезируются вещества, необходимые организму, его клеточные и неклеточные структуры;

ЭНЕРГЕТИЧЕСКОГО ОБМЕНА, в результате которого накопленная в органических веществах энергия выделяется в результате их биологического окисления и используется организмом для процессов жизнедеятельности.

Заключительная стадия обмена состоит в выведении из организма продуктов окисления и распада.

Все процессы в организме, связанные с обменом веществ и энергии, протекают с участием ферментов. Для их образования необходимы витамины, большинство из которых поступают вместе с пищей. Полное отсутствие витамина вызывает авитаминоз, недостаточное количество – гипотоминоз.

Различают основной обмен, энергозатраты, совершаемые организмом в состоянии покоя, и общий обмен – фактические энерготраты человека в реальной жизни.

Между энерготратами организма и энергетической ёмкостью (калорийностью) потребляемых им пищевых продуктов должно быть определённое соответствие (баланс).

Он учитывается при составлении пищевых рационов, также учитывается состав и качество белков, жиров, углеводов, воды, минеральных солей, поступающих с пищей. Они должны компенсировать затраты и обеспечивать нормальное функционирование организма.

ПОКРОВНЫЕ ОРГАНЫ. ТЕРМОРЕГУЛЯЦИЯ. ВЫДЕЛЕНИЕ.

КОЖА ВЫПОЛНЯЕТ МНОГООБРАЗНЫЕ ФУНКЦИИ: защитную, терморегуляционную, дыхательную, обменную. Она защищает внутреннюю среду организма от потери влаги, проникновения микроорганизмов, механических повреждений. Она сохраняет её постоянство. Производными кожи являются волосы и ногти.

Кожа человека включает наружный слой – ЭПИДЕРМИС, находящуюся под ним собственно кожу – ДЕРМУ и подкожную жирвую клетчатку, соединяющую её с глубжележащими тканями – ГИПОДЕРМУ.

На состояние кожи влияют эндокринная система, питание, наличие витаминов в пище, заболевания внутренних органов. Кроме бактерий и вирусов кожу могут поражать грибковые инфекции, клещи и другие паразиты. Возможны различные травмы: ожоги, обморожения, механические повреждения.

Постоянная температура тела поддерживается за счёт двух противоположных процессов: теплообразования и теплоотдачи.

Теплообразование происходит за счёт биологического окисления органического вещества с выделением энергии, теплоотдача – за счёт рассеивания тепла поверхностью кожи и лёгочных альвеол.

Теплоотдача с поверхности кожи регулируется нервной и эндокринной системами. Они сужают и расширяют кожные сосуды и контролируют потоотделение.

Температурное постоянство внутренней среды поддерживается двумя рефлекторными системами. Одна из них начинается с рецепторов холода, другая с рецепторов тепла. превышение верхней или нижней границы вызывает раздражение соответствующих рецепторов и рефлексы, возвращающие температуру тела к норме.

Гинетические процедуры, повышающие устойчивость организма к изменениям температуры внешней среды, главным образом к холоду, называются закаливаниям. Его надо производить систематически, постепенно снижая температурные воздействия.

Закаливиние тренирует процессы теплообразования и теплоотдачи, оно повышает эффективность иммунной системы.

При правильном подборе одежды под ней создается правильный микроклимат, способствующий поддерживанию постоянной температуры тела, влажности и воздухообмена.

Процессы выделения осуществляются лёгкими, кожей и почками. Органами мочевыделения являются почки, мочеточники, мочевой пузырь и мочеиспускательный канал.

Почки – парный орган, расположенный в поясничной области по обеим сторонам позвоночника. Они включают корковое вещество, мозговое вещество и и почечную лоханку.

Почка действует как биологический фильтр. К ней поступает по артерии кровь, содержащая продукты распада и питательные вещества.

В почке происходит их разделение: нужные вещества всасываются обратно в кровь, вредные и лишние оказываются в почечной лоханке и в виде мочи выводятся из организма.

Очищенная кровь оттекает от почки по венам, моча – по по мочеточникам в мочевой пузырь, затем удаляется из организма.

Функциональной единицей почки является нефрон.

Количество просмотров: 2111
Количество комментариев: 0
Дыхание, пищеварение, обмен веществ и энергия, кожа.
Рубрика: Блоги ~ Личные блоги
:

Источник: //www.beesona.ru/id4544/blogs/724/

Газообмен

В каком органе происходит газообмен

Газообмен

Для обеспечения жизнедеятельности между организмом и окружающей средой должен непрерывно происходить газообмен. Аэробные организмы в результате диффузии поглощают кислород (из воды, в которой он растворен, либо из атмосферы) и выделяют углекислоту. Дыхательная поверхность, на которой происходит газообмен, должна быть:

– проницаемой для O2 и CO2;

– тонкой – диффузия эффективна только на небольших расстояниях;

– влажной – эти газы диффундируют в растворе;

– большой – для поддержания достаточной скорости газообмена.

Интенсивность метаболизма растений невысока, кислорода им требуется сравнительно немного. Газообмен осуществляется путём диффузии газов через всю поверхность; у крупных растений для этих целей служат устьица листьев и трещины в коре. Клетки, содержащие хлорофилл, могут потреблять для дыхания только что выработанный ими кислород.

У одноклеточных животных газообмен происходит через клеточную мембрану. Наиболее примитивные многоклеточные – кишечнополостные, плоские черви – также обеспечивают свои потребности в кислороде, поглощая его каждой клеткой, находящейся в контакте со средой.

У более сложных организмов появляется большое количество клеток, не контактирующих со средой, и простая диффузия становится неэффективной. Необходима специальная дыхательная система, которая будет эффективно поглощать кислород и выделять углекислоту.

Как правило, эта система оказывается связанной с кровеносной системой, обеспечивающей доставку кислорода тканям и клеткам. Растворимость кислорода в крови составляет 0,2 мл на 100 мл крови, однако наличие дыхательных пигментов способно в десятки и сотни раз увеличить эффективность этого процесса.

Наиболее известным дыхательным пигментом является гемоглобин.

ПигментМеталлЦвет (с/без O2)ЖивотныеРастворимость O2 (мл на 100 мл крови)
ГемоглобинЖелезоОранжево-красный/пурпурно-красныйНекоторые моллюски и кольчатые черви, хордовые2–25
ГемоцианинМедьСиний/бесцветныйУлитки, головоногие, ракообразные2–8
ГемоэритринЖелезоКрасный/бесцветныйНекоторые кольчатые черви2
ХлорокруоринЖелезоКрасный/зелёныйНекоторые кольчатые черви9
Некоторые дыхательные пигменты

Рассмотрим некоторые наиболее типичные дыхательные системы.

В тело насекомых воздух попадает через специальные отверстия – дыхальца. Они открываются в воздушные полости, от которых отходят особые трубочки – трахеи. Трахеи укреплены хитином и всегда остаются открытыми.

В каждом сегменте тела они разветвляются на многочисленные мелкие трубочки – трахеолы, через которые кислород поступает прямо к тканям; необходимости в его транспортировки кровью нет. Трахеолы заполнены водянистой жидкостью, через неё диффундируют кислород и углекислота.

При активной работе мышц жидкость всасывается в ткани, и кислород попадает непосредственно к клеткам уже в газообразном состоянии. Трахейная система дыхания весьма эффективна, однако наличие в дыхательной цепи процесса диффузии ограничивает размеры насекомого (точнее, его толщину).

1
Дыхательная система насекомых
2
Жабры рыб

Газообмен у рыб происходит при помощи специальных дыхательных органов – жабр. Каждая жабра поддерживается вертикальным хрящём – жаберной дугой. У костных рыб жаберная дуга состоит из костной ткани.

От перегородки, лежащей над жаберной дугой, отходит ряд горизонтальных складок – жаберных лепестков, на каждом из которых образуются вертикальные вторичные лепестки. Свободные края жаберных перегородок вытянуты и работают как откидные клапаны.

Когда дно ротовой полости и глотки опускается, давление в них уменьшается, и в жабры через рот и брызгальца устремляется вода. Клапан при этом предотвращает попадание в жабры воды с другой стороны.

Многочисленные капилляры, пронизывающие жабры, насыщаются здесь кислородом и объединяются в жаберные артерии, выносящие из жабр богатую кислородом кровь. Отметим, что дыхательная система костных рыб более совершенна, чем у рыб хрящевых, так как у костных рыб жабры имеют бóльшую площадь поверхности, а движение крови навстречу току воды обеспечивает более эффективный обмен газов.

3
Дыхательная система земноводных
4
Дыхательная система птиц

Амфибии получают кислород тремя способами: через кожу, рот и лёгкие. При кожном и ротовом дыхании газ поглощается влажным эпителием, выстилающим кожу или ротовую полость. Заметные глазу движения горла лягушки – это именно ротовое дыхание.

Поступающий в рот воздух может также через гортань, трахею и бронхи попадать в лёгкие. Лёгкие у лягушки представляют собой пару полых мешков, стенки которых образуют многочисленные складки, пронизанные кровеносными капиллярами.

В результате мышечных сокращений происходит вдох и выдох, лёгкие наполняются воздухом, кислород из него поступает в кровь.

У высших форм позвоночных кожное дыхание отсутствует, основным дыхательным органом становятся лёгкие. Они имеют гораздо большее количество складок, чем лёгкие амфибий. У птиц появились также воздушные мешки, благодаря которым через лёгкие и во время вдоха, и во время выдоха проходит богатый кислородом воздух; это увеличивает эффективность газообмена.

5
Дыхательная система млекопитающих

У млекопитающих воздух поступает внутрь через ноздри; небольшие волоски задерживают посторонние частицы, а ресничный эпителий, которым выстланы носовые ходы, увлажняет воздух, прогревает его, а также улавливает частички, которым удалось проскользнуть через волоски.

Из носа воздух попадает в глотку, а затем в гортань. Хрящевой клапан (надгортанник) защищает дыхательные пути от попадания в них пищи. В полости гортани находятся ые связки; когда выдыхаемый воздух проходит сквозь ую щель, возникают звуковые волны.

С изменением натяжения связок меняется высота издаваемого звука.

Из гортани воздух попадает в трубковидную трахею. Её стенки покрыты ресничным эпителием, собирающим попавшие в трахею пылинки и микробы. Стенки трахеи (так же, как и гортани) выполнены из хрящевой ткани, за счёт этого она не опадает при вдохе. На нижнем конце трахея разветвляется на два бронха.

Бронхи разделяются на более тонкие бронхиолы; у самых маленьких из них (диаметром 1 мм и меньше) хрящевая ткань отсутствует. Бронхиолы разветвляются, в свою очередь, на многочисленные альвеолярные ходы, заканчивающиеся мешочками, выстланными соединительной тканью, – альвеолами.

В лёгких млекопитающего могут быть сотни миллионов альвеол, общая площадь их поверхности такова, что ими можно покрыть целое футбольное поле. Толщина стенки альвеолы составляет всего 0,0001 мм. Наружная сторона альвеол покрыта густой сетью кровеносных капилляров. Поглощаясь влажным эпителием, кислород диффундирует в плазму крови и там соединяется с гемоглобином.

Углекислый газ диффундирует в обратном направлении. Диаметр капилляров меньше диаметра эритроцитов; это обеспечивает тесное соприкосновение эритроцитов с поверхностью альвеол.

Лёгкие отделены от стенок грудной клетки плевральной полостью. Она непроницаема для воздуха; давление в ней на 3–4 мм рт. ст. ниже, чем в лёгких, за счёт чего последние заполняют почти всю грудную клетку. Вентиляция лёгких осуществляется благодаря одновременному сокращению диафрагмы и наружных межрёберных мышц.

Объём грудной клетки увеличивается, давление уменьшается, и воздух поступает внутрь. В процессе выдоха диафрагма и наружные мышцы возвращаются в прежнее положение, а внутренние межрёберные мышцы сокращаются. Грудная клетка становится меньше и воздух выталкивается из лёгких.

При больших физических нагрузках выдох становится более активным и требует дополнительных затрат энергии.

6
Лёгкие человека

Лёгкие человека вмещают около 5 литров воздуха. Объём выдыхаемого воздуха в среднем равен 450 мл; объём максимального вдоха составляет около 3,5 л.

Треть объёма воздуха при вдохе остаётся в воздухоносных путях, не попадая в лёгкие, а при выдохе выводится из организма.

кислорода в выдыхаемом воздухе составляет 16,4 % (против 21 % в атмосферном воздухе); в лёгких же кислорода ещё меньше – всего 13,8 %. Зато концентрация углекислого газа там в сотню раз больше, чем в атмосфере.

Регуляция дыхания осуществляется как непроизвольно (через дыхательный центр продолговатого мозга), так и под влиянием импульсов головного мозга. В первом случае важнейшим регуляционным фактором является содержание CO2 в крови.

При недостаточной насыщенности воздуха кислородом (например, высоко в горах) начинается гипоксия, проявляющаяся в недомогании и чувстве сильной усталости. Со временем дыхательная система может приспособиться к небольшому содержанию кислорода – в таких случаях говорят, что организм акклиматизировался в новых условиях.

Млекопитающие, способные долгое время оставаться под водой (киты, тюлени), при нырянии рефлекторно уменьшают частоту сердечных сокращений, их кровеносные каналы сужаются, и кровью снабжаются только самые важные для жизни органы. Первый вдох после выныривания служит сигналом для увеличения частоты сердечных сокращений.

Источник: //www.ebio.ru/org11.html

Строение легких. Газообмен в легких и тканях. урок. Биология 8 Класс

В каком органе происходит газообмен

В ходе этого урока мы узнаем о том, каким образом устроены наши легкие и как происходит газообмен между атмосферным воздухом и кровью и между кровью и тканями организма.

Тема: Дыхательная система

Урок: Строение легких. Газообмен в легких и тканях

Легкие человека – это парный орган конусовидной формы (см. Рис. 1). Снаружи они покрыты легочной плеврой, грудная полость покрыта пристеночной плеврой. Между 2 листками плевры находится плевральная жидкость, которая снижает силу трения при вдохе и выдохе.

Рис. 1.

За 1 минуту легкие прокачивают 100 литров воздуха.

Бронхи ветвятся, образуя бронхиолы, на концах которых находятся тонкостенные легочные пузырьки – альвеолы (см. Рис. 2).

Рис. 2.

Стенки альвеол и капилляров однослойные, что облегчает газообмен. Они образованы эпителием. Они выделяют сурфактант, который препятствует слипанию альвеол, и вещества, убивающие микроорганизмы. Отработанные БАВ перевариваются фагоцитами или выделяются в виде мокроты.

Рис. 3.

Кислород из воздуха альвеол переходит в кровь, а углекислый газ из крови переходит в альвеолярный воздух (см. Рис. 3).

Это происходит благодаря парциальному давлению, так как каждый газ растворяется в жидкости именно благодаря своему парциальному давлению.

Если парциальное давление газа в окружающей среде выше, чем его давление в жидкости, то газ будет растворяться в жидкости, пока не образуется равновесие.

Парциальное давление кислорода составляет 159 мм. рт. ст. в атмосфере, а в венозной крови – 44 мм. рт. ст. Это позволяет кислороду из атмосферы переходить в кровь.

Кровь попадает в легкие по легочным артериям и растекается по капиллярам альвеол тонким слоем, что способствует газообмену (см. Рис. 4).

Кислород, переходя из альвеолярного воздуха в кровь, вступает во взаимодействие с гемоглобином с образованием оксигемоглобина. В этом виде кислород разносится кровью от легких к тканям.

Там парциальное давление низкое, и оксигемоглобин диссоциирует, освобождая кислород.

Рис. 4.

Механизмы выделения углекислого газа сходны с механизмами поступления кислорода. Углекислый газ образует нестойкое соединение с гемоглобином – карбогемоглобин, диссоциация которого происходит в легких.

Рис. 5.

Угарный газ образует стойкое соединение с гемоглобином, диссоциация которого не происходит. И такой гемоглобин уже не может выполнять свою функцию – разносить кислород по организму. В результате этого человек может погибнуть от удушья даже при нормальной работе легких. Поэтому опасно находиться в закрытом, непроветриваемом помещении, в котором работает автомобиль или топится печь.

Дополнительная информация

Очень много людей дышит часто (более 16 раз в минуту), при этом совершая неглубокие дыхательные движения. В результате такого дыхания воздух попадает только в верхние части легких, а в нижних частях происходит застой воздуха. В такой среде происходит интенсивное размножение бактерий и вирусов.

Для самостоятельной проверки правильности дыхания понадобится секундомер. Необходимо будет определить, сколько дыхательных движений человек делает в минуту. При этом необходимо следить за процессом вдоха и вдоха.

Если при дыхании напрягаются мышцы брюшного пресса, это брюшной тип дыхания. Если изменяется объем грудной клетки, это грудной тип дыхания. Если используются оба эти механизма, то у человека смешанный тип дыхания.

Если человек совершает до 14 дыхательных движений в минуту – это отличный результат. Если человек совершает 15 – 18 движений – это хороший результат. А если более 18 движений – это плохой результат.

Список литературы

1. Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология. 8. – М.: Дрофа.

2. Пасечник В.В., Каменский А.А., Швецов Г.Г. / Под ред. Пасечника В.В. Биология. 8. –  М.: Дрофа.

3. Драгомилов А.Г., Маш Р.Д. Биология. 8. – М.: Вентана-Граф.

Рекомендованные ссылки на ресурсы сети Интернет

1. School6.tgl.ru (Источник).

2. Зоошкола (Источник).

3. Атлас анатомии человека (Источник).

Домашнее задание

1. Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология. 8. – М.: Дрофа. – С. 141, задания и вопрос 1, 3, 4.

2. Какую роль в газообмене имеет парциальное давление?

3. Какое строение имеют легкие?

4. Подготовьте небольшое сообщение, в котором объясните, почему в кровь при вдохе не попадают азот, углекислый газ и другие составляющие воздуха.

Источник: //interneturok.ru/lesson/biology/8-klass/btema-6-dyhanieb/stroenie-legkih-gazoobmen-v-legkih-i-tkanyah

Строение дыхательной системы человека

В каком органе происходит газообмен

Дыхательная система — совокупность органов, обеспечивающих поступление кислорода из окружающего воздуха в дыхательные пути, и осуществляющих газообмен, т.е.

поступление кислорода в кровоток и выведение углекислого газа из кровотока обратно в атмосферу.

Однако дыхательная система — это не только обеспечение организма кислородом — это еще и человеческая речь, и улавливание различных запахов, и теплообмен.

Органы дыхательной системы человека условно делятся на дыхательные пути, или проводники, по которым воздушная смесь поступает к легким, и легочную ткань, или альвеолы.

Дыхательные пути по уровню прикрепления пищевода условно делятся на верхние и нижние. К верхним относятся:

  • нос и его придаточные пазухи
  • ротоглотка
  • гортань

К нижним дыхательным путям относятся:

  • трахея
  • главные бронхи
  • бронхи следующих порядков
  • терминальные бронхиолы.

Носовая полость — первый рубеж при поступлении воздуха в организм. На пути пылевых частиц встают многочисленные волоски, расположенные на слизистой полости носа, и очищают проходящий воздух. Носовые раковины представлены хорошо кровоснабжаемой слизистой и, проходя сквозь извитые носовые раковины, воздух не только очищается, но и согревается.

Также нос – орган, благодаря которому мы наслаждаемся ароматом свежей выпечки, или точно можем определить местонахождение общественного туалета. А все потому, что на слизистой верхней носовой раковины расположены чувствительные обонятельные рецепторы. Их количество и чувствительность генетически запрограммированы, благодаря чему парфюмеры создают запоминающиеся ароматы духов.

Проходя сквозь ротоглотку, воздух попадает в гортань. Как же получается, что пища и воздух проходят через одни и те же части тела и не смешиваются? При глотании надгортанник прикрывает дыхательные пути, и пища попадает в пищевод. При повреждении надгортанника человек может поперхнуться. Попадание еды в дыхательные пути требует немедленной помощи и может даже привести к смерти.

Гортань состоит из хрящей и связок. Хрящи гортани видны невооруженным глазом. Самый крупный из хрящей гортани — щитовидный хрящ.

Его строение зависит от половых гормонов и у мужчин он сильно выдвигается вперед, формируя адамово яблоко, или кадык.

Именно хрящи гортани служат ориентиром для врачей при проведении трахеотомии или коникотомии – операций, которые проводятся, когда инородное тело или опухоль перекрывают просвет дыхательных путей, и обычным способом человек не может дышать.

Дальше на пути воздуха встают ые связки. Именно проходя через ую щель и заставляя дрожать натянутые ые связки, человеку доступна не только функция речи, но и пение. Некоторые уникальные певцы могут заставить дрожать связки с частотой 1000 децибел и силой своего голоса взрывать хрустальные стаканы
(в России самым широким диапазоном голоса в пять октав обладает Светлана Феодулова — участница шоу «Голос–2»).

Через гортань и ые связки воздух поступает в трахею. Трахея анатомически делится на шейную и грудную части. Анатомическим ориентиром является яремная вырезка грудины.

Трахея имеет строение хрящевых полуколец. Передняя хрящевая часть обеспечивает беспрепятственное прохождение воздуха за счет того, что трахея не спадается. Сзади к трахее прилегает пищевод, и мягкая часть трахеи не задерживает прохождение пищи по пищеводу.

Дальше воздух по бронхам и бронхиолам, выстланным мерцательным эпителием, добирается до конечного отдела легких — альвеол. Легочная ткань, или альвеолы – конечные, или терминальные отделы трахеобронхиального дерева, похожие на слепо заканчивающиеся мешочки.

Множество альвеол формируют легкие. Легкие — парный орган. Природа позаботилась о своих нерадивых детях, и некоторые важные органы – легкие и почки – создала в двойном экземпляре. Человек может жить и с одним легким. Легкие расположены под надежной защитой каркаса из прочных ребер, грудины и позвоночника.

Функции дыхательной системы

Интересно, что легкие лишены мышечной ткани и сами дышать не могут. Дыхательные движения обеспечивает работа мышц диафрагмы и межреберных мышц.

Человек совершает дыхательные движения благодаря сложному взаимодействию различных групп мышц межреберных, мышц брюшного пресса при глубоком дыхании, а самая мощная мышца, участвующая в дыхании, – диафрагма.

Наглядно представить работу дыхательных мышц поможет опыт с моделью Дондерса, описанный на странице 177 учебника «Биология 9 класс» под редакцией Пономаревой И.Н.

Легкие и грудная клетка выстланы плеврой. Плевра, которая выстилает легкие, называется легочной, или висцеральной. А та, которая покрывает ребра, – пристеночной, или париетальной. Строение дыхательной системы обеспечивает необходимый газообмен.

При вдохе мышцы растягивают легочную ткань, как умелый музыкант меха у баяна, и воздушная смесь атмосферного воздуха, состоящая из 21% кислорода, 79% азота и 0.

03% углекислого газа поступает по дыхательным путям к конечному отделу, где оплетенные тонкой сетью капилляров альвеолы готовы принять кислород и отдать отработанный углекислый газ из человеческого тела.

Состав выдыхаемого воздуха отличается значительно бо´льшим содержанием углекислого газа – 4%.

Чтобы представить масштаб газообмена, только подумайте, что площадь всех альвеол человеческого организма примерно равна волейбольной площадке.

Чтобы альвеолы не слипались, их поверхность выстлана сурфактантом — специальной смазкой, содержащей липидные комплексы.

Терминальные отделы легких густо оплетены капиллярами и стенка кровеносных сосудов тесно соприкасается со стенкой альвеол, что позволяет содержащемуся в альвеолах кислороду по разнице концентраций, без участия переносчиков, путем пассивной диффузии поступать в кровь.

Если вспомнить основы химии, а конкретно – тему растворимость газов в жидкостях, особо дотошные могут сказать: «Ерунда какая, ведь растворимость газов с повышением температуры уменьшается, а тут вы рассказываете, что кислород отлично растворяется в теплой, почти горячей — примерно 38-39°С, соленой жидкости».
И они правы, но забывают, что эритроцит содержит гемоглобин-захватчик, одна молекула которого может присоединить 8 атомов кислорода и транспортировать их к тканям!

В капиллярах кислород связывается с белком-переносчиком на эритроцитах и по легочным венам к сердцу возвращается насыщенная кислородом артериальная кровь.
Кислород участвует в процессах окисления, а клетка в результате получает необходимую для жизнедеятельности энергию.

Дыхание и газообмен – самые важные функции дыхательной системы, но далеко не единственные. Дыхательная система обеспечивает поддержание теплового баланса за счет испарения воды при дыхании. Внимательный наблюдатель замечал, что в жаркую погоду человек начинает чаще дышать. У людей, правда, этот механизм работает не так эффективно, как у некоторых животных, например у собак.

Гормональную функцию через синтез важных нейромедиаторов (серотонина, дофамина, адреналина) обеспечивают лёгочные нейроэндокринные клетки (PNE-pulmonary neuroendocrine cells). Также в легких синтезируются арахидоновая кислота и пептиды.

Регуляция

Казалось бы, что тут сложного. кислорода в крови снизилось, и вот она – команда для вдоха. Однако на самом деле механизм значительно сложнее. Ученые до сих пор не разгадали механизм, благодаря которому человек дышит. Исследователи лишь выдвигают гипотезы, и только некоторые из них доказываются сложными экспериментами. Точно установлено лишь то, что истинного водителя ритма в дыхательном центре, подобного водителю ритма в сердце, нет.

В стволе мозга расположен дыхательный центр, который состоит из нескольких разрозненных групп нейронов. Выделяют три основных группы нейронов:

  • дорсальная группа — основной источник импульсов, которые обеспечивают постоянный ритм дыхания;
  • вентральная группа — контролирует уровень вентиляции легких и может стимулировать вдох или выдох в зависимости от момента возбуждения.Именно эта группа нейронов управляет мышцами брюшного пресса и живота для глубокого дыхания;
  • пневмотаксический центр — благодаря его работе происходит плавная смена выдоха вдохом.

Для полноценного обеспечения организма кислородом нервная система регулирует скорость вентиляции легких через изменение ритма и глубины дыхания. Благодаря отлаженной регуляции даже активные физические нагрузки практически не влияют на концентрацию кислорода и углекислого газа в артериальной крови.

В регуляции дыхания участвуют:

  • хеморецепторы каротидного синуса, чутко реагирующие на содержание газов О2 и СО2 в крови. Рецепторы расположены во внутренней сонной артерии на уровне верхнего края щитовидного хряща;
  • рецепторы растяжения легких, расположенные в гладких мышцах бронхов и бронхиол;
  • инспираторные нейроны, расположенные в продолговатом мозге и варолиевом мосту (делятся на ранние и поздние).

Сигналы с различных групп рецепторов, расположенных в дыхательных путях, передаются в дыхательный центр продолговатого мозга, где в зависимости от интенсивности и продолжительности формируется импульс к дыхательному движению.

Физиологи предположили, что отдельные нейроны объединяются в нейронные сети для регуляции последовательности смены фаз вдоха-выдоха, регистрации отдельными типами нейронов своего потока информации и изменения ритма и глубины дыхания в соответствии с этим потоком.

Расположенный в продолговатом мозге дыхательный центр контролирует уровень напряжения газов крови и регулирует вентиляцию легких с помощью дыхательных движений, чтобы концентрация кислорода и углекислого газа была оптимальной. Регуляция осуществляется при помощи механизма обратной связи.

О регуляции дыхания с помощью защитных механизмов кашля и чихания можно почитать на странице 178 учебника «Биология 9 класс» под редакцией Пономаревой И.Н.

Источник: //rosuchebnik.ru/material/stroenie-dykhatelnoy-sistemy-cheloveka/

WikiVrachInfo.Ru
Добавить комментарий