Объем воздуха в чем измеряется

Кратность воздухообмена: расчет и таблицы для различных помещений

Объем воздуха в чем измеряется

Одним из показателей, влияющих на обеспечение оптимального микроклимата в помещениях различного назначения, является кратность воздухообмена. Под этим термином обозначают, количество полных циклов смены воздушных масс в помещении в течение единицы времени, например часа.

Ротация воздушных масс обеспечивает:

  • удаление воздуха, содержащего патогенные и болезнетворные микроорганизмы;
  • замену кислорода, содержащего углекислый газ новым объемом воздуха, что создает комфортные условия для умственной деятельности человека;
  • оптимальные значения температуры и влажности в помещении, оказывающих влияние на работоспособность человека и создающих заданные условия для хранения различных изделий;
  • устранение воздуха, содержащего неприятные запахи.

Необходимые значения показателей кратности воздухообмена в зависимости от назначения помещения указываются в специальных таблицах СНиП. Ротация воздушных масс обеспечивается за счет комбинированного использования естественной и искусственной вентиляции.

Приток кислорода обеспечивается через окна, двери и при помощи специальных вентиляторов.

Однако учитывая тенденцию на использование материалов и технологий, обеспечивающих герметичность этих конструкций, близкую к абсолютным значениям, использование при строительстве зданий систем, обеспечивающих приток кислорода, является обязательным условием для достижения показателей кратности воздухообмена.

Эти задачи решаются путем оснащения стен и окон приточными клапанами, которые помимо герметичности обеспечивают поступление необходимого количества кислорода в единицу времени.

Понятие воздухообмена

Основные требования при проектировании систем кондиционирования включают определение числа циклов воздухообмена.

Под этим термином понимается создание условий для обеспечения циркуляции и полной замены объема кислорода в сооружении.

Этот параметр зависит от концентрации в воздухе вредных компонентов, наличия мест выделения избыточного количества тепла, влаги и кратности смены объема кислорода в помещении.

Кратность воздухообмена является показателем, определяющим степень интенсивности полной смены объема кислорода. Другими словами организованный, и регулируемый воздухообмен определяется как количество полных циклов смены кислорода в течение часа.

Этот параметр относится к санитарным нормам и определяет степень безопасности и комфортность нахождения человека в здании.

Нормативные и допустимые значения этого показателя определяются принятыми нормами СНиП, содержащими различные требования в зависимости от назначения комнаты.

Воздухообмен бывает естественного и искусственного типа. При этом в первом случае приток воздуха обеспечивается за счет перепада давления воздуха внутри комнаты и за ее пределами.

Во втором варианте замещение объема воздушных масс предусматривает использование систем принудительной подачи кислорода, попадание через проемы в дверях и стенах и выполнение проветривания помещений.

Организация удаления загрязненного кислорода предусматривает обустройство систем вытяжки в помещениях, имеющих наиболее загрязненный воздух.

В условиях квартиры такими местами могут быть ванна, туалет и кухня, в первых двух случаях система вентиляции может оснащаться устройствами, обеспечивающими всасывание загрязненного воздуха или воздушными клапанами, в случае с кухней, в большинстве случае речь идет об оснащении пространства над плитой различными типами вытяжных зонтов.

Расчет кратности воздухообмена

При определении кратности воздухообмена для каждого конкретного помещения проектировщики учитывают нормативные показатели, зафиксированные в санитарно-гигиенических нормах, ГОСТах и строительные правила снип, например СНиП 2.08.

01-89. Не принимая в учет содержания в воздухе вредных примесей, количество замещений для помещений определенного объема и назначения будет вычисляться по значениям нормативных показателей кратности.

Объем здания определяется по формуле (1):

где a – длина помещения;b – ширина комнаты;

h – высота помещения.

Зная объем помещения и количество поступающего в течение 1 часа кислорода, можно выполнить расчет кратности Кв, используя формулу (2):

Расчет кратности воздухообмена

где Кв – кратность воздухообмена;
Qвозд – подача чистого воздуха, поступающего в комнату в течение 1 часа.

Чаще всего формула (2) не используется для подсчета количества циклов полного замещения воздушных масс. Это связано с наличием для всех типовых сооружений различного назначения таблиц кратности воздухообмена.

При такой постановке задачи для помещения, имеющего заданный объем с известным значением коэффициента воздухообмена необходимо подобрать оборудование или выбрать технологию, обеспечивающую поступление необходимого количества кислорода в единицу времени.

В этом случае объем чистого воздуха, который должен поступить для обеспечения полной замены кислорода в помещении согласно требованиям СНиП, можно определить по формуле (3):

Согласно приведенным формулам, единицей измерения кратности воздухообмена является количество полных циклов замены кислорода в комнате в час или 1/ч.

Используя естественный тип воздухообмена можно добиться 3-4 кратной замены воздуха в помещении в течение 1 часа. При необходимости увеличения интенсивности воздухообмена рекомендуется прибегать к использованию механических систем, обеспечивающих принудительную подачу свежего или устранение загрязненного кислорода.

Методы расчета для помещений жилого дома

Приток необходимого количества воздуха в жилых помещениях в зависимости от типа комнаты может обеспечиваться через автономные воздушные клапана в стенах с регулируемыми параметрами открывания, форточки, двери, фрамуги и окна. Специалисты обращают внимание проектировщиков на то, что при расчете показателей полной замены воздуха в жилых комнатах, необходимо учитывать ряд параметров, среди которых:

  • назначение помещения;
  • количество постоянно находящихся в сооружении людей;
  • температура и влажность воздуха в помещении;
  • количество работающих электрических приборов и норма выделяемого ими тепла;
  • тип естественной вентиляции и обеспечиваемые им показатели кратности замены кислорода в течение 1 ч.

Для создания комфортных условий согласно нормам СП 54.13330.2016 величина воздухообмена должна составлять:

  1. При площади помещения, приходящегося на 1 человека в размере менее 20 м² для детских комнаты в квартире, спален, гостиных и общих помещений подача воздуха должна составлять 3 м³/ч на 1 м² площади каждой из комнат.
  2. При общей площади в расчете на одного человека превышающей 20 м², интенсивность воздухообмена должна составлять 30 м³/ч на 1 человека.
  3. Для кухни, оснащенной электрической плитой минимальные показатели подачи кислорода не могут быть меньше 60 м³/ч.
  4. Если на кухне используется газовая плита, минимальное значение нормы воздухообмена увеличивается до 80-100 м³/ч.
  5. Нормативные показатели кратности воздухообмена для вестибюлей, лестничных клеток и коридоров составляет 3 м³/ч.
  6. Параметры воздухообмена несколько возрастают при увеличении влажности и температуры в помещении и составляют для сушильных, гладильных и постирочных комнат 7 м³/ч.
  7. При организации в жилом помещении ванной и уборной, расположенных отдельно друг от друга, норма воздухообмена должна быть не меньше 25 м³/ч, при совмещенном расположении санузла и ванной комнаты, этот показатель увеличивается до 50 единиц.

Учитывая то, что при готовке помимо пара образуется ряд летучих соединений с содержанием масла и гари, при организации системы воздухообмена на кухне необходимо исключить попадание этих веществ в пространство жилых комнат.

Для этого воздух кухонного помещения за счет создания тяги в вентиляционном канале, высотой не менее 5 м и использования специального вытяжного зонта удаляется наружу. Такой тип организации ротации воздушных масс обеспечивает устранение и избыточного количества тепла.

Однако во избежание попадания отработанного воздуха в квартиры, расположенные на верхних этажах при строительстве сооружения выполняется воздушный затвор, обеспечивающий изменение направления воздушного потока.

Административные и бытовые здания

Как уже упоминалось, показатели кратности имеют различные значения для разных зданий, при этом в части случаев эксплуатация систем обеспечения ротации воздушных масс, предусматривает использование естественной вентиляции и в холодное время года.

При этом, в части используемых помещений, например душевых и уборных вытяжная система вентиляции должна работать более интенсивно, чем система подачи свежего кислорода в комнатах общего назначения.

Так, параметры ежечасно удаляемого из помещений душевых воздуха с паром должна исходить из расчета 75 м³/ч из расчета на 1 сетку, а при организации удаления загрязненного воздуха из уборных из расчета 25 м³/ч на 1 писсуар и 50 м³/ч на 1 унитаз.

Таблица кратности для торговых помещений.

При обеспечении смены воздуха в кафе организация системы вентиляции и кондиционирования должна обеспечить кратность замены воздуха в приточной системе на уровне 3 ед/ч, для системы вытяжки этот показатель должен составлять 2 ед/час.

Расчет системы полной замены воздуха в торговом зале зависит от типа используемой вентиляции.

Так, если при наличии вентиляции приточно-вытяжного типа кратность замены воздуха определяется расчетным путем для всех типов торговых залов, то при обустройстве сооружения вытяжкой, не обеспечивающей приток воздуха, кратность воздухообмена должна составлять 1,5 ед/ч.

Таблица кратности для помещений кафе

При использовании помещений, обладающих большим количеством пара, влаги, тепла или газа, расчет воздухообмена может вестись исходя из имеющегося избытка. Для того, чтобы рассчитать воздухообмен по теплоизбыткам используется формула (4):

где Qпом – количество выделяемой в помещение теплоты;ρ – плотность воздуха;c — теплоемкость воздуха;t вывод — температура воздуха, удаляемого при помощи вентиляции;

t подав — температура воздуха, подаваемого в помещение.

Организация системы обмена воздуха в котельной исходит из типа используемого котла и должна обеспечивать 1-3 кратную замену всего объема кислорода в течение часа.

Физкультурно оздоровительные учреждения

При занятиях в спортивном зале кратность обмена воздуха играет важную роль, поскольку во время физических нагрузок необходимо обеспечить поступление свежего кислорода в легкие каждого из посетителей с учетом достаточно больших объемов зала. Таким образом, требования оговаривают необходимость обеспечения поступления в спортзал при наличии посетителей 80 м3/ч воздуха.

Расчет кратности воздухообмена для бассейна исходит из количества находящихся в нем людей и должен составлять 20 м³/ч в расчете на 1 человека. В то же время, учитывая специфику нахождения в сауне, в бане, необходимо обеспечить смену 10 м³ воздуха в течение каждого часа. При этом учитывая большие объемы вырабатываемого насыщенного пара, можно вести расчет воздухообмена по влаговыделениям.

Учреждения здравоохранения

Наибольшие значения показатель кратности воздухообмена в учреждениях, относящихся к системе здравоохранения, имеет для палат, в которых производится стационарное лечение пациентов с обнаруженными патологиями инфекционного (160 м³/ч) и неинфекционного (80 м³/ч) происхождения.

Согласно нормативам большая часть других помещений, включая кабинеты врачей и процедурные комнаты должна иметь кратность вытяжки при естественном типе организации воздухообмена, равную 1-2 ед/ч.

Отдельным пунктом следует упомянуть организацию системы вентиляции операционных кабинетов. В них согласно современным требованиям должна использоваться 3 кратная система очистки воздуха, при этом работающие устройства должны обеспечивать минимальный приток 1200 м³ воздуха в час.

Помещения детских дошкольных организаций

Обеспечение требуемых норм воздухообмена в дошкольных организациях является базовым условием здоровья и нормальной умственной активности малышей. Однако при обеспечении вентиляции необходимо исключать возможность возникновения сквозняков, учитывая это требование, проветривание в детских дошкольных организациях осуществляется в соответствии с распорядком дня учреждения.

Согласно нормам, обозначенным в СНиП 41.

21-2003, для обеспечения проветривания кратность воздухообмена в классе для занятий, раздевалке, игровой комнате и в спальне для детей в возрасте до 2 лет должна составлять 1,5 ед/час.

Более строгие требования предъявляются при обеспечении полной замены в области умывальника, туалета, медицинского пункта и кухни, для которых этот показатель составляет 2-3 ед/час.

В заключении

Кратность полной замены кислорода является показателем, определяющим комфортность и безопасность пребывания в помещении.

Этот параметр отличается для помещений, имеющих различное назначение, и определяется по одной из приведенных методик исходя из показателя, определяющего подачу чистого кислорода в час и объема сооружения.

Для обеспечения микроклимата, регламентированного нормами СНиП и санитарными требованиями, может использоваться естественная, принудительная и комбинированная схема вентиляции.

Пример расчета кратности для котельной:

Источник: https://VentilyaciyaDom.ru/o-ventilyacii/vozduhoobmen/kratnost-raschet-dlya-pomeshhenij.html

Единицы измерения, применяемые в компрессорном оборудовании

Объем воздуха в чем измеряется

Решив купить компрессор, Вы сталкиваетесь с такими единицами измерения, как: кгс/см2, кПа, МПа, бар, л/мин, м3/мин, м3/час  и так далее.

Если Вы не занимались до этого момента покупкой компрессора с первого раза разобраться в этом достаточно сложно.

Специалисты компании КОМИР предлагают ознакомиться с единицами измерений, используемые в компрессорной технике, и их отношениями друг с другом.

В нашей стране используется система измерения СИ (SI). Давление в ней обозначается как Паскаль, Па (Pa), один Па (1 Pa) равен 1Н/м2. Паскаль имеет две производные: кПа и МПа: 1 МПа=1 000 000 Па, 1 кПа=1 000 Па.

В разных промышленных отраслях используются свои единицы измерения:

– мм.рт. ст. или Торр – миллиметр ртутного столба, – атм – физическая атмосфера, – 1 ат.= 1 кгс/см2 – техническая атмосфера.

В странах с Англоговорящим населением используют единицу – фунт на квадратный дюйм, т.е. PSI.

Ниже в таблице приведены соотношения разных единиц измерения друг с другом.

  Единицы измерения МПа бар мм.рт.ст Атм. кгс/см2 PSI
1 МПа 1 10 7500,7 9,8692 10,197 145,04
1 бар 0,1 1 750,07 0,98692 1,0197 14,504
1 мм.рт.ст 1,3332*10-4 1,333*10-3 1 1,316*10-3 1,359*10-3 0,01934
1 атм 0,10133 1,0133 760 1 1,0333 14,696
1 кгс/см2 0,98066 0,98066 735,6 0,96784 1 14,223
1 PSI (фунд на кв. дюйм) 6,8946*10-3 0,068946 51,175 0,068045 0,070307 1

Давление в компрессорном оборудовании имеет два значения: абсолютное давление или избыточное давление. Абсолютное давление – это давление с учетом давления атмосферы Земли. Избыточное давление – это давление без учета давления Земли.

Иначе избыточное давление еще называют рабочим или давлением по манометру – то значение давления, которое показывает стрелочный манометр. несложно заметить, что рабочее давление всегда ниже атмосферного на одну единицу. Это важно знать при заказе компрессора, чтобы правильно подобрать нужный компрессор по максимальному рабочему давлению.

Рабочее давление может находиться в диапазоне 8-15 бар. Однако существуют компрессоры и в 40 бар их называют компрессоры высокого давления. О них мы напишем позже.

Промышленный компрессор вне зависимости от своего типа: винтовой, центробежный или поршневой имеет такой основной параметр, как производительность. Под ним подразумевается объем сжатого воздуха произведенный за определенный период времени.

Упрощенно производительность компрессора – это количество сжатого воздуха на выходе компрессора, приведенное (пересчитанное) к условиям на всасе компрессора. Т.е. это не объем сжатого воздуха на выходе компрессора с каким-то избыточным давлением, это количество пропущенного через компрессор воздуха с атмосферным давлением.

Простой пример для понимания:

При производительности компрессора 10м3/мин и избыточном (рабочем) давлении 8 бар на выходе компрессора будет 1,25 м3/мин сжатого воздуха до давления 8 бар (10 м3/мин : 8 = 1,25 м3/мин).

Как правило, данный объем измеряют следующей величиной: метр кубический в минуту (м3/мин). Иногда встречаются и другие единицы измерения: метр кубический час (м3/час), литров в минуту (л/мин), литров в секунду (л/с).

  Единицы измерения м3/мин
1 л/мин 0,001
1 м3/час 1/60
л/с 0,06

Стоит отметить, что в Англоговорящих странах для указания производительности компрессора используется единица измерения, под названием – кубический фут в минуту (CFM). Один кубический фут в минуту равен 0,02832 м3/мин.

Сжатый воздух на выходе компрессора в своем составе содержит различные примеси: пары воды, механические частицы и пары масла.  Для его очистки до требуемых параметров используются фильтры сжатого воздуха, осушители сжатого воздуха. Уровень загрязненности сжатого воздуха регламентируется следующими нормативными актами: ГОСТ 17433-80, ГОСТ 24484-80, или по ISO 8573.1.

Надеюсь, у нас получилось, рассказать  про единицы измерения, применяемые в компрессорном оборудовании, если у Вас остались вопросы позвоните нам по телефону: +7 843 272-13-24.

Источник: http://www.Komir.ru/content/edinicy-izmereniya-primenyaemye-v-kompressornom-oborudovanii

В чем измеряется расход воздуха. единицы измерения сжатого воздуха

Объем воздуха в чем измеряется

Дополнительная единица измерения давления – бар:
1 бар = 105 Па = 0,1 Мпа
В технологии сжатия воздуха, рабочее давление является давлением сжатия и, как правило, выражается в барах. Ранее использовавшиеся единицы измерения давления, такие как атмосфера (1 атм = 0,981 бар), больше не используются.

По системе СИ, единица измерения температуры – градус Кельвина (°K). Его соотношение с градусомЦельсия (°C), который также не используется, следующее:

Т(°K) = t(°C) + 273,15

Объём V используемый в технологии сжатия воздуха особенно широко, например, для определения размеров ресиверов.

Он также используется для определения достаточного количества машин производящих или потребляющих сжатый воздух, объёмного расхода воздуха Vэф (равного объёму воздуха производимого или расходуемого в единицу времени).

В случае если поток сжатого воздуха течёт со скоростью v по трубе с площадью поперечного сечения А, объёмный расход Vэф:

Vэф = А × v

При помощи объёмного расхода характеризуют расход машиной сжатого воздуха. Как правило единицы измерения объёмного расхода следующие:- л/мин-м3/мин

-м3/час

В практических применениях, для определения объёмного расхода поршневых компрессоров, используется единица измерения л/мин; в случае использования винтовых компрессоров используется м3/мин.

Объёмные расходы могут сравниваться только в том случае, если они определены при одинаковом давлении и одинаковой температуре.

В современной технологии сжатия воздуха, объёмный расход используется только для определения
производительности воздушных компрессоров. К тому же, методики измерения других показателей, определяющих объёмный расход, указаны в стандартах: Германском DIN 1945 и ISO 1217.Нормированные и наиболее часто используемые значения для давления и температуры воздуха:

ро = 1,013 бар/tо = 20°C или

ро = 1,013 бар/tо = 0°C
. Объёмный расход часто определяется в нормированных кубических метрах в час (м3Н/час). Нормированный кубический метр равен,согласно стандарту DIN, объёму 1 м3 при давлении р = 1,013 бар и температуре t = 0°C.

В процессе сравнения объёмных расходов компрессоров, расположение точек замера также оказывает значительное влияние на полученный результат.

Это зависит от погоды при которой проводились замеры на входе или на выходе из компрессора или, например, от нагрузки компрессорного агрегата.

Объёмные расходы могут сравниваться только в том случае, если они замерены при одинаковом давлении и температуре и в одних и
тех же местах.

Еще одна единица измерения заслуживающая внимания при сравнении компрессоров – удельная потребляемая мощность Руд. Она выражается в кВт (киловатт) и определяет количество энергии необходимой для производства объёмного расхода 1 м3/мин.

Например, если компрессор имеет объёмный расход 6,95 м3 /мин и потребляемую мощность 42,9 кВт, то его удельная потребляемая мощность составляет:

Удельная потребляемая мощность возможно наиболее важный параметр для сравнения различных компрессоров и определения показателя качества их конструкции. Он даёт информацию о количестве полученного сжатого воздуха на затраченную единицу энергии.

Впрочем, он имеет значение в качестве критерия сравнения только в случае, если сравниваемые компрессоры имеют одинаковое рабочее давление.

При сравнении компрессоров следует также обратить внимание на следующие параметры:- при каком конечном давлении были замерены значения;

– потребляемая мощность была замерена на вале компрессора или на выходном вале приводного электродвигателя. Наконец, производительность приводного электродвигателя и всевозможных имеющихся ременных или зубчатых передач должны также приниматься в расчёт.

Единица атмосферного давления

Альтернативные описания

. (англ. сленг bar) применительно к валютным дилерским сделкам: сумма в 1 млн. фунтов стерлингов

Подводный или выходящий на поверхность воды вал в прибрежной полосе морского дна

Город (с 1938) на Украине, на реке Ров, Винницкая область

Город-порт в Югославии, в Черногории, на побережье Адриатического моря

Гряда в прибрежной полосе морского дна, образованная наносами

Единица давления равная 0,987 атм

Единица давления равная 100 кПа

Мелководная гряда перед устьями рек, впадающих в море

Россыпь, пересыпь, завал, нанос, наволок, перекат

Наносная гряда на дне моря

Наносная мель в устьях рек

Наносная полоса суши, отделяющая от моря лагуну

Небольшой буфет для вин

Небольшой ресторанчик с обслуживанием посетителей у стойки

Питейное заведение, маленький ресторан

Предприятие общественного питания

Прибрежная отмель в виде гряды из песка или других наносов

Рабочий орган врубовой машины или горного комбайна

Катхбар

Стенка для гимнастических упражнений

Шкафчик для спиртного и других напитков

Единица измерения давления, временно допускаемая к применению наравне с единицами СИ

Единица измерения давления

Имя израильской топ-модели Рафаэли

. «винный сектор» серванта

Персонаж сказки «Королевство кривых зеркал»

Закусочная, где выпивают не отходя от стойки

Заведение, где легко оказаться «под мухой»

Домашняя рюмочная

Стойка, возле которой «принимают на грудь»

Внесистемная единица давления

Город на Украине

Город в Черногории

Единица давления = 0,987 атм

Единица давления = 100 кПа

Рабочий орган горного комбайна

Ресторанная стойка

Наносная гряда на морском дне

Маленький ресторан

. «голубая устрица»

Питейное заведение

Единица давления

Алкогольный угол в шкафу

Винный буфет

И пивной, и береговой

Заведение со стойками

Кафе со стойкой

Стойка с выпивкой

Закусочная суши-…

Шкаф для вин

Закусочная

Оттуда выходят «под мухой»

Буфет для вин

Шкаф для спиртного

Небольшой ресторан

Шкафчик с виски

Пивной…

Мини-ресторан

Мебель, город, гряда или мера

Стойка, где «принимают на грудь»

. «горячительный» шкафчик

Топмодель Рафаэли

Алкогольный сервант

Ресторанчик

Заведение для стойких пьяниц

Полоска с иконками

Кучер Анидаг

Заведение со стойкой

Песчаный вал

Шкафчик для спиртного

Стойка с настойками

. «винотека» в стенке

Где выпивают не отходя от стойки?

Ресторан

Небольшой буфет для вин

Единица измерения давления

Маленький ресторан

Гряда в прибрежной полосе морского дна

Город на Украине, в Винницкой области

Роднебольшого буфета для вин или отделение для вин в шкафу, серванте

. “Винный сектор” серванта

. “Винотека” в стенке

. “Горячительный” шкафчик

. “голубая устрица”

В чем измеряют давление

Где выпивают не отходя от стойки

Заведение, где легко оказаться “под мухой”

Оттуда выходят “под мухой”

Персонаж сказки “Королевство кривых зеркал”

Раб в обратную сторону

См. баррикада

Стойка, возле которой “принимают на грудь”

Стойка, где “принимают на грудь”

Что делает воздушный компрессор?

Компрессор сжимает воздух.

Какая производительность или сколько воздуха надо сжимать за единицу времени? Обычно, производительность указывают для нормальных условий (давление атмосферное – 1 атм или 1 бар, температура комнатная – 20° С) и измеряют в следующих единицах (м³/мин.

, м3/час, л/с). Иностранцы, пишущие по-английски, называют это capacity или flow rate и измеряют в cfm или cfpm (кубических футах в минуту). Чтобы перевести одно в другое, надо помнить, что 1 фут – это 0,305 м, 1 куб. фут – 28,3 литра или 0,0283 м3.

До какого давления надо сжать воздух?

Начальное давление обычно- атмосферное. Конечное давление обычно называется давлением нагнетания (outlet pressure, discharge pressure) и может быть выражено как абсолютное, т. е., отсчитываемое от нуля, и как избыточное, т. е. добавка к атмосферному давлению.

Измеряют это в следующих единицах: Паскаль (Па, Pa) и соответственно кПа (1000 Па), МПа (1000000 Па); бар (bar), 1 бар=100 кПа; физическая атмосфера атм. (1 атм.= 1,0133 бар =101,33 кПа); техническая атмосфера ат.

(ata), (1 ат = 1 кгс/см2 = 0,98066 бар – 98,066 кПа).

Иностранцы часто любят выражать давление в PSI, что означает фунт на квадратный дюйм. Удобно помнить, что 100 PSI и 7 ат. – это почти одно и то же, а 1 ат. – это приблизительно 14 PSI.

Что заставляет компрессор сжимать воздух?

Это привод. Приводом обычно бывает электродвигатель или дизель. Важны мощность привода, измеряемая в киловаттах кВт (kW) или лошадиных силах л.с. (HP), 1 л.с.=0,74 кВт, и частота вращения, измеряемая в оборотах в минуту, об./мин. (rpm).

Для электродвигателя важны напряжение, которое измеряется в вольтах, В (V), частота питающего напряжения, измеряемая в герцах, Гц (Hz). Для оценок полезно запомнить, что на каждый 1 м3/мин. производительности компрессора общего назначения (давление 7..10 атм.

) потребуется где-то 7..8 кВт установленной мощности привода.

Будет ли компрессор путешественником?

Ответив на этот вопрос, Вы сделаете выбор между стационарным компрессором и передвижной компрессорной станцией.

Стационарные компрессоры устанавливаются в цехе на постоянное место, модели высокой производительности – на несущую раму или фундамент.

Передвижные компрессорные станции монтируются на шасси и перемещаются по стройкам, при строительстве дорог, на нефтепромыслах, трубопроводах и т.д.

Как компрессор охлаждает свой нагрев?

Воздух при сжатии нагревается. Поэтому, при работе компрессора высвобождается большое количество тепла, для удаления которого требуется система охлаждения. Основные разновидности – воздушное охлаждение и водяное охлаждение. Для последнего требуется подвод оборотной воды, поэтому надо поинтересоваться расходом воды в единицу времени.

Есть ли у компрессора воздухосборник (ресивер)?

Если его нет, то, возможно Вам придется купить его отдельно. Воздухосборники сглаживают пульсации газа, обеспечивают запас сжатого газа при временном отключении компрессора, устойчивость автоматического управления.
В большинстве случаев оптимальным является объем воздухосборника в 1 м3 на каждые 2..4 м3/мин. производительности компрессора.

Что у компрессора внутри?

Чаще всего это цилиндры с поршнями (поршневой компрессор, естественно) или пара винтов (винтовой компрессор), которые поступательно гонят воздух, уменьшая его объем. Обычно, при одинаковой производительности, поршневые компресоры стоят дешевле, шумят больше и ремонтируются легче, а винтовые – дороже, тише, надежнее и экономичнее.

Для создания небольшого избыточного давления (как правило, до 3 атм.

) применяются также пластинчато-роторные, двухроторные, водокольцевые компрессоры, в которых объем воздуха при его перемещении уменьшается другими вращающимися механизмами, а также турбокомпрессоры (компрессоры динамического типа), в которых лопатки быстро вращающейся турбины разгоняют газ до высокой скорости.

С маслом или без масла?

Для повышения эффективности работы компрессора зазоры между поршнем и цилиндром в поршневом компрессоре и между винтами – в винтовом – обычно заполнены маслом. Естественно, какая-то часть масла оказывается в сжатом воздухе.

Для его отделения используются маслоотделители и фильтры.

В тех случаях, когда содержание масла в сжатом воздухе должно быть очень малым (менее 0,01 мг/м3) применяют либо безмасляные (сухие) компрессоры, которые дороже обычных и имеют меньшую надежность, либо дорогие комплекты фильтров высокой степени очистки.

Единицы измерения, применяемые в компрессорной технике:

Единицы измерения давления.

Официально признанной системой единиц измерений является СИ (SI). Единицей измерения давления в ней является Паскаль, Па (Pa) – 1 Па = 1 Н/м2. Производные от этой единицы 1 кПа=1000 Па и 1 МПа=1000000 Па.

В различных отраслях техники используются следующие единицы: миллиметр ртутного столба (мм. рт. ст. или Торр), физическая атмосфера (атм.), техническая атмосфера (1 ат.= 1 кгс/см2), бар.

В англоязычных странах популярностью пользуется фунт на квадратный дюйм (pounds per square inch или PSI).

Соотношения между этими единицами см. в таблице:

Значение давления может отсчитываться от 0 (абсолютное давление) или от атмосферного (избыточное давление). Если давление измеряется в технических атмосферах, то абсолютное давление обозначается как ата, а избыточное – как ати, например, 9 ата, 8 ати.

Единицы измерения производительности по воздуху.

Производительность компрессоров измеряется как объем сжимаемого воздуха за единицу времени. Основная применяемая единица – метр кубический в минуту (м3/мин.). Используемые единицы – л/мин. (1 л/мин=0,001 м3/мин.), м3/час (1 м3/час =1/60 м3/мин.), л/с (1 л/с = 60 л/мин. = 0,06 м3/мин.).

Производительность приводят, как правило, либо для условий (давление и температура газа) всасывания, либо для нормальных условий (давление 1 атм., температура 20 С). В последнем случае перед единицей объема ставят букву “н” (например, 5 нм3/мин).

В англоязычных странах в качестве единицы производительности используют кубический фут в минуту (cubic foot per minute или CFM). 1 CFM = 28,3168 л/мин. = 0,02832 м3/мин. 1 м3/мин =35,314 CFM.

Источник: https://tehnashop.ru/what-is-the-air-flow-rate-units-of-measurement-of-compressed-air.html

Объемный и массовый расход газа

Объем воздуха в чем измеряется

Расход газа – это количество газа, прошедшего через поперечное сечение трубопровода за единицу времени. Вопрос в том, что принять за меру количества газа. В этом качестве традиционно выступает объем газа, а получаемый расход называют объемным.

Не случайно чаще всего расход газа выражают в объемных единицах (см3/мин, л/мин, м3/ч и т.д.). Другой мерой количества газа является его масса, а соответствующий расход называется массовым.

Он измеряется в массовых единицах (например, г/с или кг/ч), которые на практике встречаются значительно реже.

Как объем связан с массой, так и объемный расход связан с массовым через плотность вещества: , где  – массовый расход,  – объемный расход,  – плотность газа в условиях измерения (рабочие условия). Пользуясь этим соотношением, для массового расхода переходят к использованию объемных единиц (см3/мин, л/мин, м3/ч и т.д.

), но с указанием условий (температуру и давление газа), определяющих плотность газа. В России применяют «стандартные условия» (ст.): давление 101,325 кПа (абс) и температура 20°С. Помимо «стандартных», в Европе используют «нормальные условия» (н.): давление 101,325 кПа (абс) и температура 0°С.

В результате, получаются единицы массового расхода н.л/мин, ст.м3/ч и т.д.

Итак, расход газа бывает объемным и массовым.

Какой из них следует измерять в конкретном применении? Как наглядно увидеть разницу между ними? Давайте рассмотрим простой эксперимент, где три расходомера последовательно установлены в магистраль.

Весь газ, поступающий на вход схемы, проходит через каждый из трех приборов и выбрасывается в атмосферу. Утечек или накопления газа в промежуточных точках системы не происходит.

Источником сжатого воздуха является компрессора, от которого под давлением 0,5…0,7 бар (изб) газ подаётся на вход поплавкового ротаметра. Выход ротаметра подключен ко входу теплового регулятора расхода газа серии EL-FLOW, производства компании Bronkhorst. В нашей схеме именно он регулирует количество газа, проходящее через систему.

Далее газ подаётся на вход второго поплавкового ротаметра, абсолютно идентичного первому. При задании расхода 2 н.л/мин с помощью расходомера EL-FLOW первый поплавковый ротаметр дает показания 1,65 л/мин, а второй – 2,1 л/мин. Все три расходомера дают различные показания, причем разница достигает 30%.

Хотя через каждый прибор проходит одно и то же количество газа.

Попробуем разобраться. Какая мера количества газа в данной ситуации остается постоянной: объем или масса? Ответ: масса.

Все молекулы газа, попавшие на вход в систему, проходят через нее и выбрасываются в атмосферу после прохождения второго поплавкового ротаметра. Молекулы как раз и являются носителями массы газа.

При этом удельный объем (расстояние между молекулами газа) в разных частях системы изменяется вместе с давлением.

Здесь следует вспомнить, что газы сжимаемы, чем выше давление, тем меньше объем занимает газ (закон Бойля-Мариотта). Характерный пример: цилиндр емкостью 1 литр, герметично закрытый подвижным поршнем малого веса. Внутри него содержится 1 литр воздуха при давлении порядка 1 бар (абс).

Масса такого объема воздуха при температуре равной 20°С составляет 1,205 г. Если переместить поршень на половину расстояния до дна, то объем воздуха в цилиндре сократится наполовину и составит 0,5 литра, а давление повысится до 2 бар (абс), но масса газа не изменится и по-прежнему составит 1,205 г.

Ведь общее количество молекул воздуха в цилиндре не изменилось.

Возвратимся к нашей системе. Массовый расход (количество молекул газа, проходящих через любое поперечное сечение в единицу времени) в системе постоянен. При этом давление в разных частях системы отличается.

На входе в систему, внутри первого поплавкового ротаметра и в измерительной части расходомера EL-FLOW давление составляет порядка 0,6 бар (изб). В то время, как на выходе EL-FLOW и внутри второго поплавкового ротаметра давление практически атмосферное.

Удельный объем газа на входе ниже, чем на выходе. Получается, что и объемный расход газа на входе ниже, чем на выходе.

Эти рассуждения подтверждаются и показаниями расходомеров. Расходомер EL-FLOW измеряет и поддерживает массовый расход воздуха на уровне 2 н.л/мин. Поплавковые ротаметры измеряют объемный расход при рабочих условиях.

Для ротаметра на входе это: давление 0,6 бар (изб) и температура 21°С; для ротаметра на выходе: 0 бар (изб), 21°С. Также понадобится атмосферное давление: 97,97 кПа (абс). Для корректного сравнения показаний объемного расхода, все показания должны быть приведены к одним и тем же условиям.

Возьмем в качестве таковых «нормальные условия» расходомера EL-FLOW: 101,325 кПа (абс) и температура 0°С.

Пересчет показаний поплавковых ротаметров в соответствии с методикой поверки ротаметров ГОСТ 8.122-99 осуществляется по формуле:

 , где Q – расход при рабочих условиях; Р и Т – рабочие давление и температура газа; QС – расход при условиях приведения; Рс и Тс – давление и температура газа, соответствующие условиям приведения.

Пересчет показаний ротаметра на входе к нормальным условиям по этой формуле даёт значение расхода 1,985 л/мин, а ротаметра на выходе – 1,990 л/мин. Теперь разброс показаний расходомеров не превышает 0,75%, что при точности ротаметров 3% ВПИ является отличным результатом.

Из приведенного примера видно, что объемный расход сильно зависит от рабочих условий. Мы показали зависимость от давления, но в той же мере объемный расход зависит и от температуры (закон Гей-Люссака).

Даже в технологической схеме, имеющей один вход и один выход, где отсутствуют утечки и накопление газа, показания объемного расходомера будут сильно зависеть от конкретного места установки.

Хотя массовый расход будет одним и тем же в любой точке такой схемы.

Хорошо понимать физику процесса. Но, все же, какой расходомер выбрать: объемного расхода или массового? Ответ зависит от конкретной задачи.

Каковы требования технологического процесса, с каким газом необходимо работать, величина измеряемого расхода, точность измерений, рабочие температура и давление, особые правила и нормы, действующие в Вашей сфере деятельности, и, наконец, отведенный бюджет.

Также следует учитывать, что многие расходомеры, измеряющие объемный расход, могут комплектоваться датчиками температуры и давления. Они поставляются вместе с корректором, который фиксирует показания расходомера и датчиков, а затем приводит показания расходомера к стандартным условиям.

Но, тем не менее, можно дать общие рекомендации. Массовый расход важен тогда, когда в центре внимания находится сам газ, и необходимо контролировать количество молекул, не обращая внимания на рабочие условия (температура, давление). Здесь можно отметить динамическое смешение газов, реакторные системы, в том числе каталитические, системы коммерческого учета газов.

Измерение объемного расхода необходимо в случаях, когда основное внимание уделяется тому, что находится в объеме газа. Типичные примеры – промышленная гигиена и мониторинг атмосферного воздуха, где необходимо проводить количественную оценку загрязнений в объеме воздуха в реальных условиях.

Источник: https://www.massflow.ru/info/obemnyy-i-massovyy-rashod-gaza/

ВПК

Объем воздуха в чем измеряется

Единицы измерения, применяемые в компрессорной технике. Единицы измерения давления.

Официально признанной системой единиц измерений является СИ (SI). Единицей измерения давления в ней является Паскаль, Па (Pa) – 1 Па = 1 Н/м2. Производные от этой единицы 1 кПа=1000 Па и 1 МПа=1000000 Па.

В различных отраслях техники используются следующие единицы: миллиметр ртутного столба (мм. рт. ст. или Торр), физическая атмосфера (атм.), техническая атмосфера (1 ат.= 1 кгс/см2), бар.

В англоязычных странах популярностью пользуется фунт на квадратный дюйм (pounds per square inch или PSI). Соотношения между этими единицами см. в таблице.

МПабармм.рт.ст.Атм.кгс/см2PSI
1 МПа =1107500,79,869210,197145,04
1 бар =0,11750,070,986921,019714,504
1мм.рт.ст.=133,32 Па1,333*10-311,316*10-31,359*10-30,01934
1 атм =0,101331,013376011,033314,696
1 кгс/см2 =0,0980660,98066735,60,96784114,223
1 PSI =6,8946 кПа0,06894651,7150,0680450, 0703071

Значение давления может отсчитываться от 0 (абсолютное давление) или от атмосферного (избыточное давление). Если давление измеряется в технических атмосферах, то абсолютное давление обозначается как ата, а избыточное – как ати, например, 9 ата, 8 ати.

Единицы измерения производительности по газу

Производительность компрессоров измеряется как объем сжимаемого газа за единицу времени. Основная применяемая единица – метр кубический в минуту (м3/мин.). Используемые единицы – л/мин. (1 л/мин=0,001 м3/мин.), м3/час (1 м3/час =1/60 м3/мин.), л/с (1 л/с = 60 л/мин. = 0,06 м3/мин.).

Производительность приводят, как правило, либо для условий (давление и температура газа) всасывания, либо для нормальных условий (давление 1 атм., температура 20 С). В последнем случае перед единицей объема ставят букву “н” (например, 5 нм3/мин).

В англоязычных странах в качестве единицы производительности используют кубический фут в минуту (cubic foot per minute или CFM). 1 CFM = 28,3168 л/мин. = 0,02832 м3/мин. 1 м3/мин =35,314 CFM.

Стандарты загрязненности сжатого воздуха

По ГОСТ 17433-80

Значение давления Регламентируются: размер твердых частиц (d,мкм), содержание посторонних частиц (С) и капельных фракций масла (Oil) и воды (W), измеряемое в мг/м3, точка росы водяного пара.

КлассD,мкмС,мг/м3Oil ,мг/м3W,мг/м3КлассD, мкмС,мг/м3Oil,мг/м3W,мг/м3
00,50,00100 .....
151002515000
310200410280016
525200625280016
740400840480016
9804001080480016
11*12.50012*12,5320025
13*250014*2510000100
Для классов 0, 1, 3, 5, 7, 9, 11, 13 точка росы водяного пара – ниже минимальной рабочей температуры не менее чем на 10 КДля классов 2,4,6,8,10,12,14 точка росы водяного пара не регламентируется

*- значение данного параметра не регламентируется. Пример записи: “воздух Кл. 7 ГОСТ 17433-80”

По ISO 8573.1

Различают классы по максимальному размеру d (мкм) и концентрации C (мг/м3) частиц, точке росы водяного пара T oC) и максимальному содержанию масла Oil (мг/м3).

По частицамПо точке росыПо маслу
Классd, мкмC, мг/м3КлассT, СКлассOil, мг/м3
10,10,11-7010,01
21,01,02-4020,1
35,05,03-2031,0
415,08,04+345,0
540,010,05+7525,0
6+10
7Не регл.

*-Пример записи: “ISO 8573.1 класс 1.4.1” для воздуха класса 1 по частицам, класса 4 по точке росы и класса 1 по маслу.

*- значение данного параметра не регламентируется. Пример записи: “Различают классы по максимальному размеру d (мкм) и концентрации C (мг/м) частиц, точке росы водяного пара T C) и максимальному содержанию масла Oil (мг/м).    *-Пример записи: “” для воздуха класса 1 по частицам, класса 4 по точке росы и класса 1 по маслу.

Источник: https://www.v-p-k.ru/articles/article14/

WikiVrachInfo.Ru
Добавить комментарий